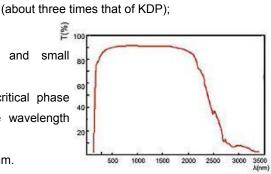


NLO Crystals

Birefringent Crystals

AO and EO Crystals

Lithium Triborate (LiB₃O₅, LBO)


Introductions

- \diamond High damage threshold;
- \diamond Wide acceptance angle and small walk-off;

◇ Type I and type II non-critical phase matching (NCPM) in a wide wavelength range;

♦ Spectral NCPM near 1300nm.

Basic Properties

Items	Specifications			
Crystal Structure	Orthorhombic, Space group Pna21, Point group mm ²			
Lattice Parameter	a=8.4473 \oplus , b=7.3788 \oplus , c=5.1395 \oplus , Z=2			
Melting Point	About 834°C			
Mohs Hardness	6			
Density	2.47 g/cm3			
Thermal Conductivity	3.5W/m/K			
Thermal Expansion Coefficient	α x=10.8x10-5/K , α y= -8.8x10-5/K , α z=3.4x10-5/K			
Transparency Range	160-2600nm			
SHG Phase Matchable Range	551 ~ 2600nm (Type I) 790-2150nm (Type II)			
Therm-optic	dnx/dT=-9.3X10-6			
Coefficient	dny/dT=-13.6X10-6			
(°C, λ in μ m)	dnz/dT=(-6.3-2.1λ)X10-6			
Absorption	<0.1%/cm at 1064nm			
Coefficient	<0.3%/cm at 532nm			
Angle Acceptance	6.54mrad-cm ((, Type I, 1064 SHG)			
	15.27mrad-cm (θ, Type II,1064 SHG)			
Temperature	4.7°C-cm (Type I, 1064 SHG)			
Acceptance	7.5°C-cm (Type II,1064 SHG)			
Spectral Acceptance	1.0nm-cm (Type I, 1064 SHG)			
	1.3nm-cm (Type II,1064 SHG)			
Walk-off Angle	0.60° (Type I 1064 SHG)			
	0.12° (Type II 1064 SHG)			

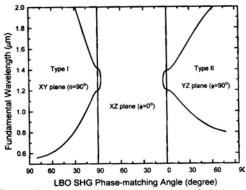
LBO

Crystal

NLO Crystals

Birefringent Crystals

AO and EO Crystals


Lithium Triborate (LiB₃O₅, LBO)

Basic Properties

Items	Specifications		
	deff(I)=d32cos∳	(Type I in XY plane)	
NLO Coefficient	$deff(I)=d31cos2\theta+d32sin2\theta$	(Type I in XZ plane)	
	deff(II)=d31cos0	(Type II in YZ plane)	
	deff(II)=d31cos20+d32sin20	(Type II in XZ plane)	
Non-vanish ed NLO	d31=1.05 \pm 0.09 pm/V		
susceptibiliti es	d32= -0.98 \pm 0.09 pm/V		
	d33=0.05 \pm 0.006 pm/V		
	$n_x^2 = 2.454140 + 0.011249/(l^2 - 10.011249))$	0.011350)-0.014591l ² -6.60′10 ⁻⁵ l ⁴	
Sellmeier	(I in mm, T=20 °C)		
Equations	$n_{y}^{2} = 2.539070 + 0.012711/(l^{2} - 0.012523) - 0.018540l^{2} + 2.00^{\prime}10^{-4} l^{4}$		
(λ in μm)	(I in mm, T=20 °C)		
	$n_z^2 = 2.586179 + 0.013099/(l^2 - 10.013099)/(l^2 - 10.01309)/(l^2 - 10.013099)/(l^2 - 10.013099)/(l^2 - 10.013099)/(l^2 - 10.013099)/(l^2 - 10.013099)/(l^2 - 10.01309)/(l^2 - 10.01309)/(l^2$	0.011893)-0.017968l ² -2.26 ⁻¹ 0 ⁻⁴ l ⁴	
	(I in mm, T=20 °C)		

SHG and THG at Room Temperature

LBO is phase matchable for the SHG and THG of Nd:YAG and Nd:YLF lasers, using either type I or type II interaction. For the SHG at room temperature, type I phase matching can be reached and has the maximum effective SHG coefficient in the principal XY and XZ planes in a wide wavelength

range from 551nm to about 2600nm. The optimum type II phase matching falls in the principal YZ and XZ planes.

SHG conversion efficiencies of more than 70% for pulse and 30% for cw Nd:YAG lasers, and THG conversion efficiency over 60% for pulse Nd:YAG laser have been observed by using Banner Union's LBO crystals.

Applications

◇More than 480mW output at 395nm is generated by frequency doubling a 2W mode-locked Ti:Sapphire laser (<2ps, 82MHz). The wavelength range of 700-900nm is covered by a 5x3x8mm3 LBO crystal.</p>

 $\diamond \text{Over 80W}$ green output is obtained by SHG of a Q-switched Nd:YAG laser in a type II 18mm long LBO crystal.

_ ◇The frequency doubling of a diode pumped Nd:YLF laser (>500µJ @ 1047nm, <7ns, 0–10KHz) reaches over 40% conversion efficiency in a 9mm long LBO crystal.</p>

LBO

Crystal

To find out more about Optics, please visit http://www.buoptics.com

LBO 01

Banner Union Applied Optics Co., Ltd.

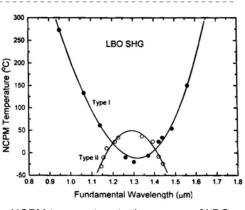
NLO Crystals

Birefringent Crystals

AO and EO Crystals

Lithium Triborate (LiB₃O₅, LBO)

Applications


 \Diamond The VUV output at 187.7 nm is obtained by sum-frequency generation.

 \diamond 2mJ/pulse diffraction-limited beam at 355nm is obtained by intracavity frequency tripling a Q-switched

◇Nd:YAG laser.

Non-Critical Phase-Matching

Non-Critical Phase-Matching (NCPM) of LBO is featured by no walk-off, very wide acceptance angle and maximum effective coefficient. It promotes LBO to work SHG its optimal condition. in conversion efficiencies of more than 70% for pulse and 30% for cw Nd:YAG lasers have been obtained, with good output stability

Crystals

NCPM temperature tuning curves of LBO

type I and type II non-critical phase-matching can be reached along x-axis and z-axis at room temperature, respectively.

Properties of type I NCPM SHG at 1064nm		
8°C		
mrad-cm1/2		
C-cm		
69 d36(KDP)		

Applications

and beam quality.

Over 11W of average power at 532nm was obtained by extra-cavity SHG of a
 25W Antares mode-locked Nd:YAG laser (76MHz, 80ps).

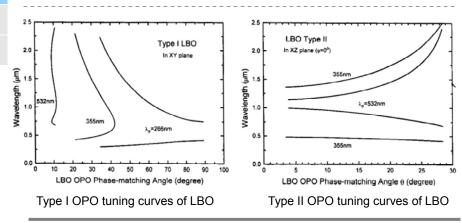
 \diamond 20W green output was generated by frequency doubling a medical, multi-mode Q-switched Nd:YAG laser. Much higher green output is expected with higher input.

LBO's OPO and OPA

LBO is an excellent NLO crystal for OPOs and OPAs with a widely tunable wavelength range and high powers. These OPO and OPA that are pumped by the SHG and THG of Nd:YAG laser and XeCI excimer laser at 308nm have been reported. The unique properties of type I and type II phase matching as well as the NCPM leave a big room in the research and applications of LBO's OPO and OPA. The left figure shows the calculated type I OPO tuning curves of LBO pumped by the SHG, THG and 4HG of Nd:YAG laser in XY plane at the room temperature. And the right figure illustrates type II OPO tuning curves of LBO pumped by the SHG and THG of Nd:YAG laser in XZ plane.

LBO

Crystal


NLO Crystals

Birefringent Crystals

AO and EO Crystals

Lithium Triborate (LiB₃O₅, LBO)

LBO's OPO and OPA

Applications

 \diamond A quite high overall conversion efficiency and 540-1030nm tunable wavelength range were obtained with OPO pumped at 355nm.

 \diamond Type I OPA pumped at 355nm with the pump-to-signal energy conversion efficiency of 30% has been reported.

◇Type II NCPM OPO pumped by a XeCl excimer laser at 308nm has achieved 16.5% conversion efficiency, and moderate tunable wavelength ranges can be obtained with different pumping sources and temperature tuning.

 \diamond By using the NCPM technique, type I OPA pumped by the SHG of a Nd:YAG laser at 532nm was also observed to cover a wide tunable range from 750nm to 1800nm by temperature tuning from 106.5°C to 148.5°C.

◇By using type II NCPM LBO as an optical parametric generator (OPG) and type I critical phase-matched BBO as an OPA, a narrow linewidth (0.15nm) and high pump-to-signal energy conversion efficiency (32.7%) were obtained when it is pumped by a 4.8mJ, 30ps laser at 354.7nm. Wavelength tuning range from 482.6nm to 415.9nm was covered by increasing the temperature of LBO or rotating BBO.

LBO's Spectral NCPM

Not only the ordinary non-critical phase matching (NCPM) for angular variation but also the non-critical phase matching for spectral variation (SNCPM) can be achieved in the LBO crystal. As shown in Fig.2, the phase matching retracing positions are $\lambda 1=1.31\mu$ m with $\theta =86.4^{\circ}$, $\varphi=0^{\circ}$ for Type I and $\lambda 2=1.30\mu$ m with θ =4.8°, $\varphi=0^{\circ}$ for Type II. The phase matching at these positions possess very large spectral acceptances $\Delta\lambda$. The calculated $\Delta\lambda$ at $\lambda 1$ and $\lambda 2$ are 57nm-cm-1/2 and 74nm-cm-1/2 respectively, which are much larger than the other NLO crystals. These spectral characteristics are very suitable for doubling broadband coherent radiations near 1.3 μ m, such as those from some diode lasers, and some OPA/OPO output without linewidth-narrowing components.

LBO

Crystal

NLO Crystals

Birefringent Crystals

AO and EO Crystals

Lithium Triborate (LiB₃O₅, LBO)

AR-coating

Dual Band AR-coating (DBAR) of LBO for SHG of 1064nm.

 \Diamond low reflectance (R<0.2% at 1064nm and R<0.5% at 532nm);

 \diamond high damage threshold (>500MW/cm2 at both wavelengths);

 \Diamond long durability.

Broad Band AR-coating (BBAR) of LBO for SHG of tunable lasers. Other coatings are available upon request.

Standard Specifications

Items	Specifications
Dimension Tolerance	(W±0.1mm)x(H±0.1mm)x(L+0.5/-0.1mm) (L≥2.5mm)
	(W±0.1mm)x(H±0.1mm)x(L+0.2/-0.1mm) (L<2.5mm)
Clear aperture	central 90% of the diameter
Flatness	< λ/8 @ 632.8nm
wavefront distortion	< λ/8 @ 632.8nm
Bevel	≪0.2mm@45°
Chip	≤0.1mm
Surface Quality	scratch and dig 10-5
Parallelism	\leqslant 20 arc seconds
Perpendicularity	\leq 5 arc minutes
Angle tolerance	θ∆≪0.25°, φ∆≪0.25°
Damage threshold[GW/cm]:	 >10 for 1064nm, TEM00, 10ns, 10HZ (polished only) >1 for 1064nm, TEM00, 10ns, 10HZ (AR-coated) >0.5 for 532nm, TEM00, 10ns, 10HZ (AR-coated)

Notes

 $\diamond\,$ LBO has a very low susceptibility to moisture. Users are advised to provide dry conditions for both the use and preservation of LBO.

◇ Polished surfaces of LBO requires precautions to prevent any damage.

LBO

Crystal